Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to alpha-amylase inhibitor.

نویسندگان

  • P Doruker
  • A R Atilgan
  • I Bahar
چکیده

The dynamics of alpha-amylase inhibitors has been investigated using molecular dynamics (MD) simulations and two analytical approaches, the Gaussian network model (GNM) and anisotropic network model (ANM). MD simulations use a full atomic approach with empirical force fields, while the analytical approaches are based on a coarse-grained single-site-per-residue model with a single-parameter harmonic potential between sufficiently close (r </= 7 A) residue pairs. The major difference between the GNM and the ANM is that no directional preferences can be obtained in the GNM, all residue fluctuations being theoretically isotropic, while ANM does incorporate directional preferences. The dominant modes of motions are identified by (i) the singular value decomposition (SVD) of the MD trajectory matrices, and (ii) the similarity transformation of the Kirchhoff matrices of inter-residue contacts in the GNM or ANM. The mean-square fluctuations of individual residues and the cross-correlations between domain movements retain the same characteristics, in all approaches-although the dispersion of modes and detailed amplitudes of motion obtained in the ANM conform more closely with MD results. The major weakness of the analytical approaches appears, on the other hand, to be their inadequacy to account for the anharmonic motions or multimeric transitions driven by the slowest collective mode observed in MD. Such motions usually suffer, however, from MD sampling inefficiencies, and multiple independent runs should be tested before making conclusions about their validity and detailed mechanisms. Overall this study invites attention to (i) the robustness of the average properties (mean-square fluctuations, cross-correlations) controlled by the low frequency motions, which are invariably reproduced in all approaches, and (ii) the utility and efficiency of the ANM, the computational time cost of which is of the order of "minutes" (real time), as opposed to "days" for MD simulations. Proteins 2000;40:512-524.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Dynamics of Proteins Predicted by Molecular Dynamics Simulations and Analytical Approaches: Application to a-Amylase Inhibitor

The dynamics of a-amylase inhibitors has been investigated using molecular dynamics (MD) simulations and two analytical approaches, the Gaussian network model (GNM) and anisotropic network model (ANM). MD simulations use a full atomic approach with empirical force fields, while the analytical approaches are based on a coarsegrained single-site-per-residue model with a singleparameter harmonic p...

متن کامل

Computational investigation of ginsenoside F1 from Panax ginseng Meyer as p38 MAP Kinase Inhibitor: Molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction.

Ginsenoside F1 is a biologically active compound identified potential from Korean Panax ginseng Meyer. In the present study, the potential targets of ginsenoside F1 were investigated by computational target fishing approaches including ADMET prediction, biological activity prediction from chemical structure, molecular docking, and molecular dynamics methods. Results were suggested to express th...

متن کامل

Computational investigation of ginsenoside F1 from Panax ginseng Meyer as p38 MAP Kinase Inhibitor: Molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction.

Ginsenoside F1 is a biologically active compound identified potential from Korean Panax ginseng Meyer. In the present study, the potential targets of ginsenoside F1 were investigated by computational target fishing approaches including ADMET prediction, biological activity prediction from chemical structure, molecular docking, and molecular dynamics methods. Results were suggested to express th...

متن کامل

Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation

The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 40 3  شماره 

صفحات  -

تاریخ انتشار 2000